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Virtual Reality System Concepts Illustrated Using 
OSVR 

Author: Russell M. Taylor II 
 
The immersive nature of virtual and augmented reality systems engages the human visual system in 
ways that require wider field of view and lower latency than other 3D computer graphics systems to 
provide artifact-free rendering that avoids inducing fatigue and discomfort in viewers.  The need to 
construct consistent transformations between multiple objects in the system (head, hands, and/or 
screens) requires a common space.  The need to precisely match the viewing direction requires off-axis 
projection matrices that are carefully matched to the relative positions of the viewer’s eyes and 
screens.  System lens designs often induce chromatic aberration and nonlinear distortions of the 
screen images that depend on the location of the viewer’s eyes with respect to the lenses and the 
location of the lenses with respect to the screens.  The temporal sampling apertures of tracking 
systems and the finite times required to render and scan out the images, together with operating-
system-induced delays, introduce latency between the viewer’s head pose and the images being 
displayed at a given moment in time. 
 
VR systems have developed a set of approaches to addressing these issues. The result of applying these 
concepts is a geometric rendering state that describes to the application how to render each eye.  As 
the visual sense is the primary perceptual channel exploited by virtual reality systems, that is the focus 
of this chapter – getting the visual aspects correct is paramount. 
 
This chapter introduces each of these issues, presenting both theoretical descriptions and example 
implementations in the Open-Source VR system (OSVR.org).  OSVR is a universal open source VR 
ecosystem for technologies across different brands and companies pioneered and led by Yuval Boger 
with a core development team at Sensics including Ryan Pavlik, Jeremy Bell, Greg Aring, Georgiy Frolov, 
and Kevin Godby. Chapter author Russ Taylor provided consulting support including developing the 
RenderManager rendering kit that implements many of the functions described herein.  Many others 
from the growing OSVR community have contributed to its development.  The Apache 2 open-source 
and open-hardware licensing for OSVR makes it an effective base for building both research and 
commercial solutions. 

Common Space 
To enable proper rendering, the viewer’s head (and sometimes eyes) are tracked.  Because of the need 
to interact with the virtual world, their hands are also often tracked; indeed, to enable a feeling of 
presence, some systems track a whole-body skeleton.  In head-mounted systems the screens are 
attached to the viewer’s head, in CAVE-like systems they are located in the real world, and in 
projection-based systems they are projected onto objects located in the real world.  This section 
describes the spaces needed to support viewing and interacting with the virtual world. 
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As seen in figure 32.1, VR systems often involve separate devices at different locations.  The 
computational loads involved, the need for physical separation between cameras and the objects they 
are tracking, and the fact that different vendors provide different tracking systems means that often 
more than one device is used to perform tracking.  An inertial measurement unit augmented by an 
external camera may be used to track the head while a depth camera is used to determine the whole-
body skeleton.  For screen-based systems, the screens are necessarily at different fixed locations in the 
room while the viewer’s head is tracked separately.  A force-feedback device may be used to track the 
hand and interact with the world while a camera-based system is used to track the viewer’s head. 

 
 
Consistent display and interaction requires determining the transformations between each tracked 
object in the same coordinate system.  Figure 32.2 follows the model in [Robinett92], which calls this 
coordinate system Room space, a space that is rigidly attached to the physical room or vehicle where 
the viewer is located.  Room space is connected to the Virtual World space in which the application 
object lives by a transformation that enables the entire VR system to move as a unit in the world.  
Depending on the system, displays live in either Room space (fishtank VR, CAVE-like systems) or Head 
space (head-mounted displays).  The locations of various tracker bases live in room space and they 
measure sensors that are attached with an offset and rotation to head, hand, and any other tracked 
space.  Because the application may want to draw things in these spaces (hand models, indication of 
camera location), the VR system must make its spaces available to the application. 

 
Figure 32.1: This shows three versions of the Nanomanipulator system that enabled a viewer to 
see and touch real atoms and molecules using a scanned-probe microscope [Taylor93].  The left 
image shows a non-VR mode of operation using standard 3D graphics and a force display pen 
where only the hand is tracked.  The center image shows a magnetically-tracked head-mounted 
display system co-registered with a mechanical force-feedback hand-tracking system (the image 
seen in one eye is displayed on the screen for collaborators).  The right image shows optically 
tracked glasses with the viewer looking at a stereo display and using a force-feedback hand-
tracking system. 
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Implementation of spaces within OSVR 
OSVR is separated into server and client portions, with servers managing devices and keeping track of 
semantic paths that provide meaningful names (for example, mapping /xbox/button/0 to 
/me/hands/left/fingerTrigger) and that describe how transformations are nested to provide VR-
relevant transformations (for example, mapping /myExternalOculus/tracker/0 to /me/head). 
 

 

  
Figure 32.2: This VR space diagram, reworked from [Robinett92], shows the spaces 
managed by a VR system.  Solid lines are determined during system calibration; dashed 
lines are updated during viewing (with the application managing its own set of spaces, 
which it can modify at will).  The large-dot blue transforms (eyes and screens) are used 
together to determine the projection and viewing transformations.  On some systems, 
the eyes may also be tracked, but the transformations described in this chapter ignore 
this tracking. 
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OSVR is also separated into subsystems: Core and RenderManager are the two that will be referenced 
here.  Core manages devices, transformations, configuration, and message passing.  RenderManager 
implements advanced rendering techniques for a number of rendering systems (OpenGL, Direct3D, 
GLES). 
 
OSVR_Core manages the common spaces within OSVR using one or more osvr_server processes.  Client 
applications connect to these servers to find out about devices and events.  OSVR uses interfaces to 
provide access to spaces and other devices, which are accessed by named paths as shown in Listing 
32.1: 
 

Listing 32.1: Getting an interface to head space. 
        OSVR_ClientContext m_context; 
        m_context = osvrClientInit("com.osvr.renderManager"); 
        std::string headSpaceName = "/me/head"; 
        OSVR_ClientInterface m_roomFromHeadInterface; 
        OSVR_PoseState m_roomFromHead; ///< Transform to use for head space 
        osvrClientGetInterface(m_context, headSpaceName.c_str(), &m_roomFromHeadInterface); 
 
Once configured, the client context can be updated.  Each call to update reads all messages from the 
server and updates the state of all interfaces.  This state is only updated when requested, so that a 
consistent set of interface states can be used for rendering to all eyes.  Once the context has been 
updated for a frame, the application can read the state of any interfaces along with the time at which 
the state was valid as shown in Listing 32.2: 
 

Listing 32.2: Reading the head pose state. 
        osvrClientUpdate(m_context); 
        OSVR_TimeValue timestamp; 
        osvrGetPoseState(m_roomFromHeadInterface, &timestamp, &m_roomFromHead); 
 
For trackers that provide them, velocity and acceleration information is also available in the interface 
state, supporting predictive tracking. 

Projection and Viewing Transformations 
This section describes projection transformation and the portions of the viewing transformation 
required to set the viewpoint.  It is adapted from [OSVRView16].  It assumes planar rectangular 
screens.  See the Distortion Correction section below for how to convert distorted systems (non-ideal 
lenses, non-planar display surfaces) into the planar model used here. 
 
This discussion ignores the effects of eye tracking, and it also ignores the fact that the center of 
projection of the eye is not the same as its center of rotation.  (The center of projection is always along 
the viewing direction in front of the center of rotation, so the approximation is slight.)  With eye 
tracking the only change is to move each eye’s position from the center of rotation of the eye to the 
tracked center of its entrance pupil. 
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Overview 
The purpose of the combined projection and viewing transformations are to provide a geometric 
description of how to properly project 3D points onto one or more rectangular planar screens that the 
viewer is looking at in such a way that they appear to remain fixed in space as the viewer's head moves 
and rotates. 
 
When dealing with fixed-screen displays: head-tracked stereo on a monitor, CAVE displays, or VR desk 
designs, the screen remain fixed in room space and the eyes move around.  When dealing with head-
mounted displays, each screen moves along with the eyes and remains at the same location in head 
space.  Although this affects how these locations are determined, it does not affect the basic 
mathematics involved or the approach to determining the viewing transformations. 
 
To make the discussion easier to illustrate and understand, it is presented initially for the 2D case and 
then extended into 3D. 
 
Without Lenses 
Figure 32.3 shows the situation without lenses.  This matches the case for fixed-screen displays, but is 
an approximation for head-mounted configurations.  (The case with lenses will be discussed next.)  The 
transformations can be computed in physical-world units, for example meters; they do not depend on 
the window size in pixels.  The location and size of each screen and all eye positions are all that is 
needed to determine the projection and viewing transformations.  Methods for determining these 
locations are described in the Implementation section. 
 

 

 
Figure 32.3: Top view of the projection transformation parameters without lenses.  In 
general, the projection direction is not the same as the gaze direction towards the center of 
the screen (off-axis projection). 
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Projection Transformation 
The result of projection is a 2D image on a planar projection surface.  To appear correctly when drawn 
on the screen, this projection surface needs to be parallel to the physical screen and it must subtend 
the same region on the retina.  It can be moved closer or further to the eye, but then must be scaled so 
that its edges are at the same projected locations as the real screen.  This is easiest to think about in 
terms of angles and a viewing direction, which are independent of depth. 
 
It is tempting to project along the presumed gaze direction, which is towards the center of the screen.  
However, doing so would project onto a planar surface that is not parallel to the screen.  To make the 
two parallel, the projection direction must be perpendicular to the screen, along its normal vector.  
Note that this will make the center of projection lie outside the screen if the gaze direction is 
sufficiently off center.  (Another term for this case, where the gaze and projection vectors differ, is off-
axis projection.)  Given this unique projection direction, two angles can be specified, one for each edge 
of the screen.  One rotates the projection direction to point towards the left edge of the screen (a 
slight positive rotation in figure 32.3) and the other to point to the right edge of the screen (a large 
negative rotation in figure 32.3).  Chapter 33 provides details of constructing an off-axis projection 
matrix. [Kooima18] 
 
Viewing Transformation 
The job of the viewing transformation is to place the center of projection at the location of the eye in 
Virtual World space (where the graphical objects to be rendered are defined).  This placement requires 
translating the origin in Eye space to its location in world space and rotating it so that the negative Z 
axis in eye space is looking along the projection direction in world space.  Together with the projection 
transformation, this operation takes 3D points in world space and projects them onto a virtual screen 
that is consistent with the pose of the physical screen compared to the center of the physical viewer's 
eye location. 
 
Going to 3D 
Going from the 2D-to-1D projection example above to a 3D-to-2D projection requires another 
translation to set the vertical location of the eye with respect to the screen.  It also requires two more 
rotations.  These rotate the world so that the X axis in eye space is parallel to the X axis in screen space 
(from left to right) and the Y axis is parallel to the Y axis in screen space (from bottom to top).  
Together with the Z rotation, this aligns the four corners of the virtual screen with the corners of the 
physical screen. 
 
Implementation 
The projection and viewing transformations must ultimately be implemented in the graphics library 
being used to display the world.  These libraries (OpenGL, Direct 3D, Unreal, Unity, Vulkan, and others) 
each have their own coordinate systems.  Some of the them are right-handed, and some left-handed.  
Some have the origin at the upper-left corner of the screen and some at the lower left.  Some have 
specified world-space units (meters, centimeters) and some do not. 
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The coordinate system used in this chapter matches the OSVR internal coordinate system.  As with 
many toolkits, OSVR includes utility adapters to convert its internal representations of viewing and 
projection matrices to the formats used by various rendering libraries. 
 
Finding Eye Space 
In OSVR, Head space is defined with its origin halfway between the center of rotation of the viewer’s 
eyes, with its X axis pointing towards the right eye, its Y axis pointing up out the top of the viewer’s 
head, and its Z axis pointing out the back of the head.  Getting from room space to head space is the 
job of the tracking and interaction systems as described elsewhere.  Getting from head space to eye 
space for each eye is a matter of translating along the X axis by half of the inter-pupillary distance (IPD) 
in +X for the right eye and -X for the left. 
 
Determining Screen Edges 
For head-mounted displays without eye tracking, the screen edges are fixed in eye space.  This means 
that the projection transformation remains fixed for a given eye as the viewer's head moves around 
the environment so that only the viewing transformation requires updating. 
 
For fixed-screen displays, the location of each screen must be measured or constructed such that the 
locations of its edges are known in room space.  The relative position and orientation of each eye 
relative to each screen changes between each rendered frame, so both the viewing and projection 
transformations must be updated.  This is also required for eye-tracked head-mounted display (HMD) 
systems. 
 
Because the screens in the HMD are too close for most viewers to focus on, HMD displays employ 
lenses to turn the physical screen into a virtual image.  The impact of this is described in the next 
section. 
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With Ideal Lenses 

 
An ideal lens uniformly magnifies or minifies all objects behind it, scaling their size and distance 
consistently.  As shown in figure 32.4, this enlarges the screen and moves it further away, producing an 
image of the screen that is parallel to the actual screen but located behind it.  Note that the rays 
through the lens bend, causing the image to appear larger than a direct projection would be, yielding a 
wider field of view. 
 
The algorithm for determining the projection and viewing transforms remains the same as above, but 
now all measurements are made from the image of the screen rather than the physical screen.  This is 
not theoretically challenging, but it is a practical challenge to determine the when the lens parameters 
are not known because the edges of the screen may not be visible through the lens.  Assuming the lens 
characteristics and the physical size and location of the screen with respect to the lens are known, the 
location of the image can be computed.  If not, calibration is needed. 
 
Adjustable Lenses 
Some head-mounted displays, such as the OSVR HDK 1.2, let the user adjust the location of the lenses 
to make room to insert eyeglasses into the display and to adjust the width so that their pupils stay 
within the exit pupil of the lens (the region where it behaves like an ideal lens, sometimes referred to 
as the eye box). 
 
For an HMD where the lenses can be moved with respect to the screens, the position and size of the 
image of the screen move with respect to the eye.  As the lens is moved closer to the screen (further 

 
Figure 32.4: An ideal lens magnifies the physical screen and produces a virtual image 
of the screen that appears to be much further from the eye.  An ideal lens produces 
a flat, undistorted screen. 
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from the eye), the image of the screen appears to get larger, producing a larger field of view.  As the 
lens is moved to the left, the image of the screen appears to move to the right.  When the lens remains 
stationary and the eye is moved within the exit pupil of the lens, the image of the screen appears to 
remain the same.  (When the eye is moved outside the lens exit pupil, additional distortion is seen.) 
 
So long as the viewer's pupil remains in the exit pupil of the lens, the projection and viewing 
transformations should be based on the actual center of projection of the eye (based on the IPD) 
rather than based on the nominal center of the exit pupil for the lens and based on the virtual image of 
the screen.  If the viewer's pupil goes beyond the exit pupil of the lens, causing distortion, then the 
HMD lens locations should be adjusted and the system recalibrated. 
 
Specification of the screen 
The following describes a compact general description of a screen, for a description of how to specify 
these parameters in OSVR configuration files, see the Specifying the screen subsection of the 
Distortion Correction section below. 
 
Fixed Rectangular Screen: The specification of a rectangular fixed-screen systems can be done by 
specifying the room-space coordinates of the lower-left, lower-right, and upper-left corners in meters.  
Because this allows a non-rectangular result, in the case where the vectors from the lower-left corner 
to the lower-right and upper-left corners are not orthogonal, the projection of the upper-left 
coordinate onto the plane perpendicular to the vector from the lower-left to lower-right corner will be 
used as the upper-left corner (which will reduce the screen height). 
 
Head-Mounted Displays (HMDs): The screens in a head-mounted display may be mounted at any 
angle with respect to each other and with respect to the device and the viewer's relative eye positions.  
The lack of a standard for fiducials on head-mounted displays and the fact that some can be 
individually adjusted means that no coordinate system can be defined with respect to the HMD itself 
that will be correct in all circumstances. 
 
A general solution describes the location of the corners of the image of the screen with respect to 
Head space, which has its origin halfway between the center of rotation of the eyes, its X axis pointing 
towards the right eye, its Y axis pointing up, and its Z axis pointing towards the back of the head.  There 
is a separate definition for each screen.  Although the viewing and projection matrices will depend on 
the viewer's IPD, the screen location depends only on the lens locations (presuming that the viewer's 
eyes lie within the exit pupils for each lens).  As with the fixed rectangular screen each screen is 
specified by providing three sets of 3D coordinates: the image of the screen's lower-left corner, its 
lower-right corner, and its upper-left corner.  These corners are the locations of the image of the 
screen even if those locations are not visible to the viewer through the lenses (this can make 
calibration challenging).  As for fixed rectangular screens, in the case where the vectors from the 
lower-left corner to the lower-right and upper-left corners are not orthogonal, the projection of the 
upper-left coordinate onto the plane perpendicular to the vector from the lower-left to lower-right 
corner will be used as the upper-left corner. 
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Specification for HMDs whose lenses introduce distortion, along with fixed curved screens is described 
in the Distortion Correction section below.  The basic approach is for the distortion correction to map 
pixels from the physical display onto an appropriately-defined rectangular screen that this chapter will 
refer to a “canonical screen” and then to specify three corners of this canonical screen (whose corners 
may or may not be visible) as described above. 
 
A note on field of view (FOV) calculations: As seen here, the viewport 
width is proportional to the tangent of half of the horizontal field of 
view, and the height to half that of the vertical field of view.  This 
means that for non-square aspect ratios, the ratio of the window 
width/height is not directly proportional to the ratio of the 
HFOV/VFOV.  This means that you cannot multiply the horizontal field 
of view by the ratio of the display size in pixels to compute the vertical 
field of view. 

 
Figure 32.5: The corners of the screens are specified in Head space, whose origin is halfway 
between the two eyes with the -Z axis facing forward and the +X axis pointing from the left eye 
towards the right. 
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For example, the horizontal field of view on the OSVR HDK 1.2 is 90 degrees and it covers half of the 
screen (1920/2).  It is incorrect to compute the vertical field of view using 90 / ((1920/2) / 1080) = 
101.25 degrees.  The correct calculation is atanDegrees( (tanDegrees(90/2) / ((1920/2) / 1080)) ) * 2 = 
96.73 degrees.  The diagonal field of view uses the screen diagonal size in pixels (1445) rather than 
1920/2 to get a diagonal field of view of 112.8 degrees. 

Distortion Correction 
This section adapts [OSVRDistort16] and describes how to remove the effects of distortion caused by 
curved screens and lenses.  Although it is possible to construct lens systems that do not introduce 
distortion, weight and cost constraints on HMDs often lead to the use of lenses that do cause 
distortion.  Removing this distortion can be handled as part of rendering. 
 
The basic function of distortion correction is to map locations from a rectangular, planar so-called 
canonical screen that is defined by the distortion-correction algorithm onto coordinates within a 
physical display being viewed through a lens that causes distortion. This same approach can be used to 
undistort pixels that are presented on a non-rectangular or non-planar display (such as a curved TV or a 
projection that includes keystone or that is onto a non-planar surface).  Note that this transformation 
can be specified in fractional screen coordinates in a similar manner to texture coordinates and does 
not depend on display resolution – the distortion remains the same even when the number of pixels 
being displayed changes. 
 
In the overall rendering process, the projection and viewing transformations take points in 3D model 
space and project them onto the rectangular and planar canonical screen, and then distortion 
correction adjusts the resulting image to undo the nonlinear effects of lenses or curved screens used to 
view it, mapping each point from its canonical location back into its physical location. 
 
Approach 
The distortion correction is free to select any rectangle as the canonical screen to be projected on, so 
long as it properly undistorts images rendered onto that rectangle.  We shall see that the canonical 
screen should lie in depth within the range of the virtual image of the real screen to reduce shift in 
distortion as the eye rotates to look in different directions. 
 
Two special cases of distortion correction are presented and then a more general solution is described. 
 
Case 1: Curved screen 
The image below shows an example of a curved display (like the currently-available OLED TVs) viewed 
without a lens from a viewpoint in the middle of the screen along the screen's normal at that location.  
The center of the image shows a top-down 1D view of the scene and a first-person view of the screen 
from the eye's point of view.  Note that the distortion correction for a curved screen depends on the 
viewer's eye position.  The more curved the screen, then more pronounced the effect.  This is also true 
for other forms of distortion. 
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In figure 32.6 left, the blue screen is the (distorted) screen that would be seen and the green rectangle 
is one possible choice for an undistorted canonical screen.  We are free to choose any depth for the 
canonical screen so long as we adjust its projected size to match the extents seen in the 2D view – it 
could be brought closer and scaled down or pushed back further and scaled up.  This particular 
canonical screen is smaller than the physical screen – there are locations on the physical screen that 
are outside the canonical screen. 
 
Overfill 
There are some locations on the physical screen shown in figure 32.6 left that do not correspond to 
any location on the chosen canonical screen.  This means that there is no image to be moved to that 
location.  To avoid this, the canonical screen (green) can be selected so that it completely includes the 
physical screen, which will provide a mapping for every point on the physical display (but will also 
necessarily provide “wasted” mappings for some points outside the physical display).  This example is 
shown in figure 32.6 right. 
 
This overfill is also required for other distortions, including radially-symmetric distortions.  This is 
because any non-linear distortion will turn the rectangular boundary of the screen into a set of curves. 
 
(In figure 32.6 right, the canonical screen is behind the real screen, which will cause the distortion 
correction to depend more strongly on eye position.  A better solution would place the canonical 

 
Figure 32.6: Two potential canonical screens for a curved-screen display viewed straight on. 
Left: The canonical screen is tangent to the physical screen and covers only a subset of the 
screen’s surface (it misses the corner regions).  Right: The canonical screen is behind the 
physical screen and covers the entire screen and a region beyond it. 
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screen somewhere within the depths covered by the physical screen, rendering into offscreen regions 
as in the center case.) 
 
Correcting the distortion 
Figure 32.7 shows two potential approaches to undistorting cylindrical projection and describes some 
reasons that might lead to choosing one over the other. 
 

 
 
Pre-distortion and its deficits: The right side of figure 32.7 shows an approach that might be taken, 
which is to pre-distort the original scene geometry by the inverse of the optical distortion that will be 
done by the cylindrical projection so that the resulting rendered image can be directly drawn on the 
(blue) physical screen and have the correct projected image.  This requires applying an arbitrary 
nonlinear mapping to the geometry, which is not easily done and which the graphics hardware would 
piecewise-linearly interpolate across triangles.  Another way to do this same pre-distortion is to do a 
standard rendering pass and then do a second pass where the original (green) canonical texture 
generated in the first pass is rendered onto distorted geometry that projects onto the appropriate 
location on the (blue) screen.  Either approach produces an image that includes a non-linear warping of 
the geometry, resulting in an image that cannot be translated or rotated to handle temporal 
corrections because of head rotation (see the Time Warp section below). 
 
Post-undistortion: The left side of the figure 32.7 shows another approach, which is to determine 
which point on the canonical screen (green) corresponds to each point on the distorted real screen 
(blue).  This makes use of the fact that the graphics system can render into a texture that is handed to 
the VR system for presentation.  During the final render pass, the texture coordinates for each point 
are adjusted to read each visible pixel from its corresponding location in the green texture.  This 
undistortion can be done in the graphics library’s vertex shader by producing a dense mesh that has 
adjusted texture coordinates per color or in the pixel shader either by applying a function to the 

 
Figure 32.7: Two approaches to distortion correction.  Left: Construct a map from every point in 
the real screen (blue) to corresponding locations within the canonical (green) texture and use this 
to pull the correct pixel in the shader.  Right: Render pre-distorted geometry texture mapped with 
the canonical (green) image into the display (blue), pushing each pixel to its correct location. 
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texture coordinates or using a texture map to provide the new texture coordinate per color to map to 
the proper location on the screen.  This approach has the benefit that the image sent to the final 
rendering pass is still a linear projection, enabling it to work with other techniques described later, 
such as time warping. 
 
Case 2: Per-color radial distortion 
Many lenses have chromatic aberration (a different magnification for each wavelength of light), 
resulting in three different distorted images, one per primary color.  This distortion happens in addition 
to the desired behavior of the lens, which is to magnify the physical display and to move its virtual 
image further from the eye so that the viewer can focus on it.  It is possible to make lens systems that 
are achromatic and produce the same per-color distortion, but it is also possible to correct for this 
chromatic distortion within the rendering system. 
 
Although the position of the virtual image of the screen for an ideal lens does not depend on the 
position of the user's eye (so long as the eye is in the exit pupil for the lens), radial distortion does 
depend on the location of the viewer's eye.  This means that completely correcting for radial distortion 
requires accounting for the location of each of the viewer's eyes relative to its lens as well as knowing 
the location of each lens with respect to its screen. 
 
The following parameterization provides one approach (the one used by OSVR) to specifying this type 
of distortion: 

 Center of projection: This provides the coordinates for the location on the virtual image of the 
screen where the ray from the center of the viewer's eye through the center of projection of 
the lens intersects it.  This is a fractional coordinate from 0-1 in each axis, with the lower-left 
corner of the screen being (0,0) and the upper-right being (1,1). 

 Distance scales: Because distortion correction depends on both the lens geometry and the 
screen geometry and may not be directly related to the viewport size or aspect ratio (for lenses 
that expand more in one direction than the other), one must specify not only the radial 
distortion polynomial coefficients (which scale powers of the distance from the center of 
projection to the point), but also the space in which this is measured.  This is specified as the 
number of unit radii in the space the parameters are defined in that span the texture 
coordinates, which range from 0 to 1.  This can be different for X and Y, as the viewport may be 
non-square and the lens system may make yet a different aspect ratio.  There are separate D 
components for width (DX) and height (DY). 

 Per-color coefficients: A set of polynomial coefficients can be provided for each color.  The 
coefficients can specify the new radial displacement from the center of projection as a function 
that scales the original displacement.   The first coefficient in each polynomial is a constant 
factor (multiplied by offset^0, or 1), the second is the linear factor, the third is quadratic, and so 
forth.  There can be as many coefficients as desired. 

 
The coefficients for R, G, and B; the Distances for X and Y; and the center of projection (COP) may be 
specified in any consistent space that is desired (scaling all of them linearly will have no impact on the 
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result), but the lower-left corner of the space (as viewed on the canonical screen) must be at (0,0) and 
upper-right must be at (DX,DY). 
  
The parameters for each color specify the new radial displacement from the center of projection as a 
function of the original displacement.  Listing 32.3 shows how to calculate the distorted location based 
on an original location and the above parameterization: 
 

Listing 32.3: Calculating radial distortion. 
    // Orig is the (x,y) coordinate specified with X in (0..Dx) and Y in (0..Dy) 
    // COP is the center of projection specified in normalized screen coordinates (0..1) for X and Y 
    // D is (Dx,Dy) as described above 
    // Final is the radially-distorted coordinate 
    Offset = Orig – COP*D;                  // Vector, component-wise multiplication 
    OffsetMag = sqrt(Offset.length() * Offset.length());   // Scalar 
    NormOffset = Offset / OffsetMag;     // Vector 
    Final = COP*D + (a0 + a1*OffsetMag + a2*OffsetMag*OffsetMag + ...)  * NormOffset; // Location 
 
Examples: (1) For a display 10 pixels wide by 8 pixels high that has square pixels whose center of 
projection is in the middle of the image, we would get: D = (10, 8); COP = (0.5, 0.5); parameters 
specified in pixel-unit offsets.  (2) For a display that is 6 units wide by 12 units high, but whose optics 
stretch the view horizontally to produce a square viewing image with pixels that are stretched in X, we 
could have: D = (12, 12); COP = (0.5, 0.5); parameters specified in vertical pixel-sized units or D = (6,6); 
COP = (0.5, 0.5); parameters specified in horizontal pixel-sized units. 
 
More general solution: Using a screen-point-to-angles table 
Suppose that either through direct measurement with a camera or through ray-tracing in the optical 
design for a head-mounted display, you produce a mapping between physical points on the display 
screen and angles from the center of the eye, for a given IPD.  This mapping can be arbitrary, so long as 
it is a mathematical function (does not contain folds) and it may be an unordered set of points.  
Assume that angles are specified in degrees from views looking along the -Z axis in head space (straight 
forward) and the positions on the display are specified as distances in millimeters from the point on 
the display that corresponds to the point that would be see at angle (0,0).  Further, assume that the 
focal distance to the virtual image of the real screen is around 2 meters (some portions being closer, 
and some further).  An example of this is shown in figure 32.8. 
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Step 1: Determine a canonical screen that spans the physical screen 
The eye-space location of each point is computing using polar coordinates, using the 2-meter focus 
estimate as the radius.  The longitudinal angle is assumed to have positive spin around the Y axis with 0 
facing forward along the –Z axis and the latitudinal angle is assumed to be positive when rotating up 
towards the +Y axis. 
 
The X screen-space extents are defined by the lines perpendicular to the Y axis passing through: 

 Left: the point location whose reprojection into the Y=0 plane has the most-positive angle (note 
that this may not be the point with the largest longitudinal coordinate, because of the impact of 
changing latitude on X-Z position). 

 Right: the point location whose reprojection into the Y=0 plane has the most-negative angle 
(note that this may not be the point with the smallest longitudinal coordinate, because of the 
impact of changing latitude on X-Z position). 

 

 
Figure 32.8: A mapping from real-world angles to physical-display locations drawn on top of 
a rectangular physical display on which is drawn an image distorted by its inverse so that it 
will look correct when viewed through the lens.  Each blue dot represents one sample of 
the mapping.  Dots that lie outside the rectangle will not be visible on the display.  Black 
areas in the display are outside the mapped region so either are not visible through the 
lenses or must have their distortions extrapolated from dots within the region. 
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The Y screen-space extents are assumed to be symmetric and correspond to the lines parallel to the 
screen X axis that are within the plane of the X line specifying the axis extents at the largest magnitude 
angle up or down from the horizontal.  This is the point with the largest-magnitude Y value when it is 
projected into the plane of the screen as determined by the X screen-space extents. 
 
Because the projections of all points in the set will lie within these screen-space extents, no points 
from outside this region correspond to any point on the physical screen.  If the mapping provides 
angles for each point on the physical screen, there will be a point on the canonical screen to map to.  If 
not all points on the physical screen have mappings, it may be necessary to overfill the render region to 
provide them (see the Overfill section below). 
 
Note: The approach described above will only work for displays whose fields of view do not extend 90 
degrees from forward in either the nasal or distal orientation.  (Planar projection in general will only 
work for displays whose monocular horizontal field of view is less than 180 degrees.  Displays with 
larger fields of views will need to be rendered using multiple projections that are stitched together.)  
For displays that have fields of views less than 180 degrees but which extend beyond 90 degrees distal, 
the reprojection must be done not on the Y=0 plane but on a plane rotated away from the nose such 
that all displayed angles pass through it.  A similar rotation vertically could be used to handle displays 
that are asymmetric about the X axis. 
 
Step 2: Mapping from physical screen coordinates 
Given points in the physical screen, the distortion map provides the coordinates of the corresponding 
point on the canonical screen.  This determines the appropriate point to display at this location on the 
screen.  This is calculated in two steps: 

 Step 2A: Map from physical-display coordinate to angle using the provided table. 
 Step 2B: Map from angle to canonical-screen coordinate by projecting the ray from the eye 

onto the plane of the canonical screen.  Then determine the screen-space X and Y coordinates 
(X = 0 at left and 1 at the right, Y = 0 at the bottom and 1 at the top). 

 
Doing this mapping for points other than those specified in the table requires interpolation for display 
points between those specified and extrapolation for points outside their convex hull. 
 
Implementation of distortion calibration within OSVR 
The above procedure is implemented in the angles_to_config program in the OSVR Distortionizer 
project [OSVRAngles17].  Additional details (described below) are needed to describe the general 
results above in a manner usable by OSVR. 
 
Specifying the screen in the server configuration file 
The current OSVR display description includes the specification of a horizontal field of view, a vertical 
field of view, a center of projection (which is the normalized location on the screen where the line 
through the eye point perpendicular to the screen pierces the screen) and a percent overlap (which is 
related to the rotation of the screens around the Y axis). 
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Figure 32.9 shows some of the relevant parameters. Following it, the entries in the OSVR server 
configuration file are specified, along with a description of how to compute each of their values. 

 
 display/hmd/field_of_view/monocular_horizontal: This value is computed as if the screen is 

being viewed by an eyepoint located along the line perpendicular to the center of the screen.  
We determine it using the half-screen width and the perpendicular distance from the origin to 
the plane of the screen. 

 display/hmd/field_of_view/monocular_vertical: This value is computed as if the screen is 
being viewed by an eyepoint located along the line perpendicular to the center of the screen.  
We determine it using the half-screen height and the perpendicular distance from the origin to 
the plane of the screen. 

 display/hmd/field_of_view/overlap_percent: This percentage is computed as if the screen is 
being viewed by an eyepoint located along the line perpendicular to the center of the screen 
and as if both eyes were co-located (IPD = 0).  (Note; the resulting viewing transform does not 
make this assumption, just the current algorithm to map from overlap_percent to angle.) 

 display/hmd/eyes[0]/center_proj_x: This location is computed as the fraction of the distance 
from the left side of the screen to the right side where the line through the eye perpendicular 
to the screen crosses the screen.  This value subtracted from 1 is used in eyes[1]/center_proj_x. 

 display/hmd/eyes[0]/center_proj_y: Because there is currently no way to specify screens that 
are tilted up and down with respect to the Y=0 plane, this value is always 0.  The value of 
eyes[1]/center_proj_y is also 0. 

 

 
Figure 32.9: Configuration of an HMD with a curved screen that is rotated to provide a larger 
distal field of view.  The eye location is not in the center of the screen, resulting in an off-
center projection.  The angle between the projection and the straight-ahead view is specified 
in the overlap_percent parameter in the OSVR configuration file. 

Eye

St
ra

ig
ht

-a
he

ad
 vi

ew

Center of projection (perpendicular to canonical 
screen)



Russell M. Taylor II Version 1.0.1 Published in the book VR Gems in 2018 

Chapter 32: Taylor: VR Concepts (1.0.1)  19 

Producing the distortion map in the server configuration file 
The configuration file format allows the specification of a variety of distortions, identified by the 
display/hmd/distortion/type variable.  If the red, green, and blue components of the distortion are all 
the same, the type mono_point_samples can be used.  This means that we need to specify just one 
distortion mesh, which maps from normalized (X,Y) coordinates in a the physical display ([0,0] at the 
lower-left corner, [1,1] at the upper right) into normalized coordinates in the canonical screen. 
 
We compute the input normalized coordinates for the mesh by normalizing the table's display 
coordinates to convert them from millimeters to screen fractions, subtracting the coordinates of the 
lower-left corner of the screen and dividing each axis by the screen dimension.  We compute the 
output coordinates as described in Step 2. 
 
We then store the unordered set of points into the display/hmd/distortion/mono_point_samples array, 
which has a vector of elements, each of which has two elements, the first of which is the 2D 
coordinates in normalized physical-screen coordinates and the second of which is the 2D coordinates 
in the canonical-screen coordinates. 
 
An example output, which is a partial description of an HMD, is shown in listing 32.4.  It provides the 
identity mapping. 
 

Listing 32.4: HMD general distortion configuration file example. 
    { 
      "display": { 
        "hmd": { 
          "distortion": { 
            "type": "mono_point_samples", 
            "mono_point_samples": [ 
              [ [0,0], [0,0] ], 
              [ [1,0], [1,0] ], 
              [ [0,1], [0,1] ], 
              [ [1,1], [1,1] ] 
            ] 
          } 
        } 
      } 
    } 
 
The OSVR RenderManager uses this set of unordered point samples to compute a mesh by using a 
bilinear fit to the nearest 3 non-coplanar points to determine each of the coordinates for each point in 
space that must be sampled to produce a mesh with the specified number of points. 
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Implementation of distortion correction within OSVR 

 
As shown in figure 32.10, distortion correction is implemented within the Sensics OSVR-
RenderManager component [OSVRRenderManager17] by storing a set of texture coordinates for each 
color with each vertex in the mesh that describes the virtual screen rectangle as shown in Listing 32.5: 
 

Listing 32.5: Distortion mesh structure. 
    /// 2D float data, like a texture coordinate for example. 
    using Float2 = std::array<float, 2>; 
    /// Describes a vertex 2D position plus three 2D texture coordinates. 
    class DistortionMeshVertex { 
    public: 
        DistortionMeshVertex(Float2 const& pos, 
                             Float2 const& texRed, Float2 const& texGreen, 
                             Float2 const& texBlue) 
            : m_pos(pos), m_texRed(texRed), m_texGreen(texGreen), 
            m_texBlue(texBlue) {} 
 
        // Flips a texture coordinate that is in the range 0..1 so that 
        // it is inverted about 0.5 to be in the range 1..0.  Useful for 
        // flipping OpenGL Y coordinates into Direct3D ones. 
        static float flipTexCoord(float c) { return 1.0f - c; } 

 
Figure 32.10: OSVR uses a regular mesh to describe the mapping from normalized 
physical-screen coordinates to texture coordinates within or beyond the Canonical 
screen.  The green map is shown here; there are separate maps for red and blue.  The 
green arrows show the mapping from original (base) to distorted (arrow end) for a 
subset of the points on a mesh; the curved line shows the mapping for the border of 
the mesh. 
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        Float2 m_pos;             //< X,Y 
        Float2 m_texRed;          //< U,V 
        Float2 m_texGreen;        //< U,V 
        Float2 m_texBlue;         //< U,V 
    }; 
 
    class DistortionMesh { 
    public: 
        std::vector<DistortionMeshVertex> vertices; 
        std::vector<uint16_t> indices; 
    }; 

 
The (X,Y) coordinates describe the normalized physical-screen-space location of vertices that span the 
range -1 to 1 in X and Y; four vertices are sufficient to describe a linear transformation but more are 
needed to describe distortion.  The (U,V) texture coordinates describe the relative location within or 
beyond the canonical screen to look up the color associated with that vertex location in the physical 
screen and they are linearly interpolated by the graphics library between the vertices.  The lower-left 
corner of the canonical screen is at (0,0) and the upper-right is at (1,1).  See the Overfill section for 
how points outside this range are handled. 
 
Each rendering library (OpenGL, Direct3D, etc.) implemented in OSVR passes these coordinates to its 
vertex shader, where they are used to look up the location within the texture map associated with 
each eye.  The OpenGL GLSL vertex shader program to perform this lookup (along with the projections 
used to handle projection, viewing, and time warp) as shown in Listing 32.6: 
 

Listing 32.6: GLSL Vertex Shader implementing distortion correction and timewarp. 
#version 100 
attribute vec4 position;   //< Homogeneous coordinates for a canonical screen 
vertex 
attribute vec2 textureCoordinateR; //< Distorted red texture coordinates for this vertex 
attribute vec2 textureCoordinateG; //< Distorted green texture coordinates for this vertex 
attribute vec2 textureCoordinateB; //< Distorted blue texture coordinates for this vertex 
uniform mat4 projectionMatrix;  //< Used to correct for overfill 
uniform mat4 modelViewMatrix;  //< Used to handle display scan-out orientation, Y 
inversion 
uniform mat4 textureMatrix;  //< Used to implement time warp 
varying vec2 warpedCoordinateR;  //< Transformed red texture coordinate for fragement 
shader 
varying vec2 warpedCoordinateG;  //< Transformed green texture coordinate for fragement 
shader 
varying vec2 warpedCoordinateB;  //< Transformed blue texture coordinate for fragement 
shader 
void main() 
{ 
   gl_Position = projectionMatrix * modelViewMatrix * position; 
   warpedCoordinateR = vec2(textureMatrix * vec4(textureCoordinateR,0,1)); 
   warpedCoordinateG = vec2(textureMatrix * vec4(textureCoordinateG,0,1)); 
   warpedCoordinateB = vec2(textureMatrix * vec4(textureCoordinateB,0,1)); 
} 
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The corresponding fragment shader is shown in Listing 32.7: 
 

Listing 32.7: GLSL Fragment Shader implementing distortion correction and timewarp. 
#version 100 
precision mediump float;   //< Sets floating-point precision used 
uniform sampler2D tex;   //< Texture map with image from canonical screen 
varying vec2 warpedCoordinateR;  //< Warped texture coordinate for red channel 
varying vec2 warpedCoordinateG;  //< Warped texture coordinate for green channel 
varying vec2 warpedCoordinateB;  //< Warped texture coordinate for blue channel 
void main() 
{ 
    gl_FragColor.r = texture2D(tex, warpedCoordinateR).r; 
    gl_FragColor.g = texture2D(tex, warpedCoordinateG).g; 
    gl_FragColor.b = texture2D(tex, warpedCoordinateB).b; 
} 

 
The tex sampler is the texture passed by the application that represents the eye being rendered.  The 
red, green, and blue coordinates are independently warped by their respective distortion meshes and 
then reassembled into the fragment color. 

Handling Latency and Jitter 
Many system latencies combine to produce “motion to photon” delay: tracker sensor delays, tracker 
finite sampling rates, transmission delays, and synchronization delays on the input side; finite 
rendering time, O/S and driver buffering delays, reformatting delays, and scan-out delays on the 
output side.  Because of these delays, the poses available to construct the projection and viewing 
transforms when initiating rendering for a frame differ from the poses that each eye will have when 
display scan-out happens for that frame.  Additionally, for some displays (e.g. HMDs that scan out in 
portrait mode), the delay for the right eye is different from that for the left eye. 
 
Holloway showed in [Holloway95] that for normal head motions when observing an object of interest 
at a distance of around 1 meter, each 1ms of total system delay produces about 1mm of offset error in 
physical space – in a calibrated system errors caused by latency far outweigh all other sources of 
alignment error.  Furthermore, this delay causes motion-dependent “swimming” of the world, which is 
a major source of discomfort for viewers.  During the ~16ms scan out of a screen at 60 Hz, objects 
move approximately 1.6cm; typical graphics pipelines not designed for VR add up to two additional 
frames of latency, causing objects to move considerably, and the world to swim uncomfortably, when 
this is not dealt with. 
 
Furthermore, this delay is not constant: unless steps are taken to synchronize the tracker sampling and 
rendering to the actual image scan-out, the delays shift over time and cause the scene to appear to 
jitter back and forth.  An extreme form of jitter is when the graphics update rate does not keep up with 
the display refresh rate.  All jitter is perceived as doubled images, which is quite distracting. 
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VR systems employ several techniques to deal with this latency and jitter, including Frame Sync, 
Predictive Tracking, Time Warp (synchronous and asynchronous), and Direct Rendering.  Each of 
these is described in a separate gem below.  Not all techniques are employed in every system, but they 
can be combined to provide a superior experience. 

Frame Sync 
The underlying rendering and display scan-out circuitry usually runs at a fixed refresh rate, somewhere 
between 60 and 90 Hz.  The currently available frame is scanned out whether or not there is a new 
image to be displayed, and independent of the rendering initiation or completion time.  Thus for long 
renders an old image may be repeatedly displayed.  This section describes how to synchronize 
rendering with scan-out. 
 
In the case of a single shared buffer between the rendering and scan-out circuitry, so-called single 
buffering, this can result in tearing artifacts when the rendering system clears and then updates the 
shared buffer while scan-out is occurring – causing neighboring scan lines to be rendered from 
different frames (a temporal discontinuity – or tear between scanlines).  To avoid this tearing in single-
buffered mode one must ensure that all buffer clearing and rendering take place during the vertical 
blanking time at the end of each frame. 
 
A more robust approach to avoiding tearing is to used double buffering (or triple buffering), in which 
case the rendering system is drawing to one buffer while the previously-rendered buffer is being 
scanned out.  Once the renderer completes a frame, it swaps which buffer is to be displayed at the 
next scan-out and then gets to work rendering the next frame.  Double buffering greatly increases the 
amount of time available for rendering a frame; rather than the small fraction of a frame within the 
vertical blanking, it can now take an entire frame (or more) to render an image without causing 
tearing.  It also enables seamless decoupling between the rendering loop and the display loop – so long 
as the rendering does not get more than one frame ahead it will never cause tearing because the 
frames are swapped out during vertical retrace.  The frame-display portions of graphics libraries often 
provide a way for the application to stall when it would be two frames ahead, waiting until the current 
frame has finished scanning out before swapping the buffers and returning. 
 
To remove the jitter caused by a variation in the relative timing of render start and the next display 
scan-out, the application or VR library needs to know when the next scan-out is coming.  One approach 
is to always render ahead so that the graphics library always stalls before returning a new buffer.  This 
approach has the deficit that it starts the new rendering a whole frame before that frame will be 
scanned out, rendering it with pose information that will be a whole frame behind when scan-out 
starts.  It also does not apply in cases where the application’s frame rate cannot keep up with the 
display frame rate. 
 
Another approach is to use an operating-system-dependent barrier or timing-request function to find 
out when the next vertical retrace is going to happen, or to find out when the last one has happened 
(and with the knowledge of the refresh rate compute when the next scan will happen).  The application 
can thus schedule rendering onset such that it will complete just before the next frame is ready to scan 
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out.  In this case, double buffering does not add latency because the buffers are being swapped 
immediately before being scanned out. 
 
There is a subtle remaining issue that is discussed further in the section on Time Warp; different parts 
of the display scan out at different times.  To support intra-frame time warp, the time that the line in 
the center of the display scans out should be chosen for each eye. 
 
Implementation in OSVR 
Frame sync behavior is implemented in the Sensics OSVR-RenderManager [OSVRRenderManager17] 
using different approaches for different situations.  The OpenGL and Direct3D11 native code paths are 
currently implemented using the Simple Directmedia Library (SDL) [SDL17] to obtain windows, and it 
calls SDL_GL_SetSwapInterval(1) to enable vertical sync, which causes frame presentation to block until 
vertical sync before returning.  (The user can also supply their own windowing library in place of SDL2, 
and an example using Qt is provided in the source code.) 
 
On its direct rendering display paths, OSVR uses either vendor-provided routines or observes when 
vertical syncs happen using OS hardware queries and informs the application of this timing information 
by providing a timing function that returns the structure shown in Listing 32.8: 
 

Listing 32.8: Render-timing information structure. 
    typedef struct { 
        /// Time between refresh of display device 
        OSVR_TimeValue hardwareDisplayInterval; 
 
        /// Time since the last retrace ended (the last presentation) 
        OSVR_TimeValue timeSincelastVerticalRetrace; 
 
        /// How long until the app must send images to RenderManager 
        /// to display before the next frame is presented. 
        OSVR_TimeValue timeUntilNextPresentRequired; 
    } RenderTimingInfo; 
 
The application can then busy-wait on this value until it has sufficient time to complete rendering 
before querying the current tracking pose and initiating the render.  At least under the Windows 10 
operating system, busy waiting must be performed rather than sleeping because the operating system 
does not reliably return with a granularity of less than 10 milliseconds.  Because each eye may have 
different timing, the query includes a parameter telling which eye is being rendered.  Listing 32.11 in 
the time warp discussion shows the implementation for waiting for render completion. 

Predictive Tracking 
The inertial measurement units included in many VR tracking systems provide direct measurements of 
positional and (acceleration and rate of rotation).  The Kalman and other optimal estimation filters 
used to perform sensor fusion on the tracking systems can also estimate these derivative estimates 
along with the location and orientation.  The resulting state vector can be used to estimate a pose 
(location and orientation) at points in time other than the present, such as the expected future time 
when the next frame to be rendered will be displayed.  Ron Azuma showed that such predictions can 
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improve tracking for delays of up to about 80ms [Azuma95].  This section describes how to harness 
predictive tracking to reduce perceived latency. 
 
This estimation is done by standard physics-based double integration of acceleration and single 
integration of orientation changes over the time difference between the start of rendering and the 
expected scan-out.  This estimation should be done separately for each eye because scan-out often 
does not start at the same time for each.  Because of finite display scan-out time, it is advisable to 
calculate the delay to the center of the scanned-out image rather than to its beginning. 
 
The prediction interval can be made very accurate with respect to the system input latencies when all 
data is properly time-stamped from a consistent, system-wide (cross-component), frame of reference 
for time.  If the system is using frame sync, either by querying for the upcoming scan out time or by 
always commencing rendering just after a scan out, then the prediction interval can also be made very 
accurate with respect to the output latencies.  (Because the rendering latencies usually dominate the 
end-to-end system latencies, and because only the rendering system has access to up-to-date frame 
sync information, predictive tracking should be done in the rendering portion of the VR system using 
state vectors passed from earlier stages when frame sync is being used.) 
 
Because portrait-mode display scan-out (where both eyes are on the same display) sequentially scans 
one eye out and then the other, the prediction time for the right eye may be half a frame time ahead 
or behind the left eye. 
 
Implementation of predictive tracking within OSVR 
OSVR implements predictive tracking inside the code that provides the application with rendering state 
information (viewport, modelview & projection matrix).  It bases this prediction on the sum of three 
quantities: 1) the time since the most-recent state vector was constructed (the previous tracker report 
time) 2) the time until the next vertical retrace; and 3) a per-eye value that depends on the hardware 
being used and includes the sum of the uncompensated tracker latency with the fixed rendering 
latencies (O/S and driver buffering delays, reformatting delays, and scan-out delays).  See 
[RMPredictFuturePose17] and [RMPredictiveTracking17] for the complete implementation.  This code 
(shown in Listing 32.9) makes use of the Eigen library: 
 

Listing 32.9: Predictive Tracking. 
    // Function called below that performs dead-reckoning orientation estimation. 
    inline Eigen::Quaterniond applyQuatDeadReckoning( 

Eigen::Quaterniond const& initialOrientation, double angVelDt, 
       Eigen::Quaterniond const& velocityDeltaQuat, 
       double predictionDistance) { 
         Eigen::Quaterniond ret = initialOrientation; 
         // Determine the number of integer multiples of our deltaquat needed. 
         int multiples = static_cast<int>(predictionDistance / angVelDt); 
 
         // Determine the fractional (slerp) portion to apply after that. 
          auto predictionRemainder = predictionDistance - (multiples * angVelDt); 
        auto remainderAsFractionOfDt = predictionRemainder / angVelDt; 
 
         Eigen::Quaterniond fractionalDeltaQuat = 
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             Eigen::Quaterniond::Identity().slerp(remainderAsFractionOfDt, velocityDeltaQuat); 
 
         // Actually perform the application of the prediction. 
         for (int i = 0; i < multiples; ++i) { 
             ret = velocityDeltaQuat * ret; 
         } 
         ret = fractionalDeltaQuat * ret; 
         return ret; 
       } 
 
     // Function called below that predicts a future position and orientation. 

static void PredictFuturePose( 
    const OSVR_PoseState &poseIn, 
    const OSVR_VelocityState &vel, 
    double predictionIntervalSec, 
    OSVR_PoseState &poseOut) { 
 
    // Make a copy of the pose state so that we can handle the 
    // case where the out and in pose are the same. 
    OSVR_PoseState out = poseIn; 
 
    // If we have a change in orientation, make it. 
    if (vel.angularVelocityValid) { 
        Eigen::Quaterniond newRotation = 
            osvr::util::applyQuatDeadReckoning( 
            osvr::util::eigen_interop::map(poseIn.rotation), 
            vel.angularVelocity.dt, 
            osvr::util::eigen_interop::map(vel.angularVelocity.incrementalRotation), 
            predictionIntervalSec); 
            osvr::util::eigen_interop::map(out.rotation) = newRotation; 
    } 
 
    // If we have a linear velocity, apply it. 
    if (vel.linearVelocityValid) { 
        out.translation.data[0] += vel.linearVelocity.data[0] * predictionIntervalSec; 
        out.translation.data[1] += vel.linearVelocity.data[1] * predictionIntervalSec; 
        out.translation.data[2] += vel.linearVelocity.data[2] * predictionIntervalSec; 
    } 
 
    // Copy the resulting pose. 
    poseOut = out; 
} 

 
       ///=========================================================== 
       /// Inline code starts here, calling the above functions. 
       /// Use the state interface to read the most-recent 
       /// location of the head.  It will have been updated 
       /// by the most-recent call to update() on the context. 
       /// DO NOT update the client here, so that we're using the 
       /// same state for all eyes. 
       OSVR_TimeValue timestamp; 
       if (!m_headPoseCache || !m_headPoseCache->getLastReport(timestamp, m_roomFromHead)) { 
           // This is not an error -- they may have put in an invalid 
           // state name for the head; we just ignore that case. 
       } 
 
       // Do prediction of where this eye will be when it is presented 
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       // if client-side prediction is enabled. 
       if (m_params.m_clientPredictionEnabled) { 
           // Get information about how long we have until the next present. 
           // If we can't get timing info, we just set its offset to 0. 
           float msUntilPresent = 0; 
           RenderTimingInfo timing; 
           if (GetTimingInfo(whichEye, timing)) { 
               msUntilPresent += 
                 (timing.timeUntilNextPresentRequired.seconds * 1e3f) + 
                 (timing.timeUntilNextPresentRequired.microseconds / 1e3f); 
           } 
 
           // Find out how long ago this tracker info was found. 
           float msSinceTrackerReport = 0; 
           OSVR_TimeValue now; 
           osvrTimeValueGetNow(&now); 
           msSinceTrackerReport = static_cast<float>( 

osvrTimeValueDurationSeconds(&now, &timestamp) * 1e3); 
 
           // The delay before rendering for each 
           // eye will be different because they are at different delays past 
           // the next vsync.  The static delay common to both eyes has 
           // already been added into their offset. 
           float predictionIntervalms = msSinceTrackerReport + 
                 msUntilPresent; 
           if (whichEye < m_params.m_eyeDelaysMS.size()) { 
               predictionIntervalms += m_params.m_eyeDelaysMS[whichEye]; 
           } 
           float predictionIntervalSec = predictionIntervalms / 1e3f; 
 
           // Find out the pose velocity information, if available. 
           // Set the valid flags to false so that if to call to get 
           // velocity fails, we will not try and use the info. 
           OSVR_VelocityState vel; 
           vel.linearVelocityValid = false; 
           vel.angularVelocityValid = false; 
           if (osvrGetVelocityState(m_roomFromHeadInterface, &timestamp, &vel) != 

        OSVR_RETURN_SUCCESS) { 
               // We're okay with failure here, we just use a zero 
               // velocity to predict. 
               // Using normal get state calls here because we're effectively 
               // throwing away the returned timestamp for this data. 
           } 
 
           // Predict the future pose of the head based on the velocity 
           // information and how long we should predict.  Check the 
           // linear and angular velocity terms to see if we should be 
           // using each.  Replace the pose with the predicted pose. 
           PredictFuturePose(m_roomFromHead, vel, predictionIntervalSec, m_roomFromHead); 
       } 
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Time Warp 

 
 
Because rendering a scene takes time, and because there can be a delay between the end of rendering 
and the start of display scan-out, the image produced using the head pose that was available when 
rendering began is not perfectly matched to the pose when that image is presented to the viewer.  A 
solution is to reproject – warp – the original image based on the inverse difference between the 
original pose and the new pose calculated for the newly estimated time of presentation.  The rendered 
image is thus adjusted to more closely match what should have been rendered had the future pose 
been known a priori.  This section describes how to reduce the impact by re-warping the temporally 
out-of-date images – time warping. 
 
Fully accurate reprojection of each pixel in the image requires knowledge of its depth because the 
relative locations of pixels change as the center of projection translates and as the orientation of the 
projection surface changes.   However, much of the viewer’s rapid head motion only involves rotation 
around the center of projection, so a good approximation can be made by projecting the rendered 
image onto a rectangle in space and then altering that rectangle. 

 
For rotations around the viewing direction, this reprojection is exactly correct.  For other rotations and 
for translations, the quality of the reprojection depends on the distance between the projection plane 
and the objects in the scene.  Reprojections of planar objects aligned with the screen at the same 
distance used for reprojection will be exactly correct, and objects with other orientations and distances 
will exhibit some variability; this variability is typically less than the error of the original image, so is still 

 
Figure 32.11: Left: Unity Sun Temple demo frame drawn for the canonical screen 
pose at start of rendering and outline of where the canonical screen pose is after 
head rotation during rendering.  Right: Canonical screen shown from the viewer’s 
perspective (its motion follows the head, so remains axis aligned) and the 
rendered image after being time warped by the inverse relative transformation 
to remain stable in the 3D world. 
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an improvement over using the original, unwarped image.  Of course, the less time between rendering 
start and presentation the less distortion. 
 
To avoid an extra rendering pass, this reprojection can be done by adjusting the transformation used 
during the distortion correction rendering pass. 
 
Implementation of time warp within OSVR 
OSVR adjusts the texture transformation within its vertex shader to enable time warping to be done in 
the same rendering pass used for the distortion correction (this the reason for inclusion of the separate 
textureMatrix variable in that shader).  OSVR keeps track of the rendering poses used to generate each 
image and reprojects them for each eye using an oversized (see Overfill and Oversampling below) 
screen-aligned rectangle projected 2 meters in front of that eye.  This transformation is suitable for 
direct use within OpenGL; for D3D, OSVR adjusts the resulting transformation by inverting Y in two 
places and transposing the matrix. 
 
The reprojection calculation assumes that it is starting in a texture-coordinate space that has (0,0) at 
the lower left corner of the image and (1,1) at the upper-right corner of the image, with +Z pointing out 
of the image.  It constructs a transformation from the space used to render into the current-pose 
space.  Next, it moves the points from texture space into world space by scaling and translating them 
to match a viewport at a given distance in Z from the eyepoint.  The points are now in projection space. 
 
The ModelView matrix is then inverted from the last position and applied, moving the points back into 
world space.  The process is then reversed, using the ModelView matrix from the current location (all 
other matrices are the same) to bring the points back into texture space.  It is up to the caller to bring 
the texture coordinates to and from the space described above (see the Overfill and Oversampling 
section for how this is done). 
 
The following code relies on the Eigen library [Eigen17] to do its processing (some error checking has 
been removed for readability; see [RMATW17] for the complete implementation) as shown in Listing 
32.10.  This code includes the “just-in-timewarp” described below. 
 

Listing 32.10: Computing Time Warps for Each Eye 
 ///  @param [in] usedRenderInfo Rendering info used to construct the 
 /// textures we're going to present. 
 ///  @param [in] currentRenderInfo Rendering info to warp to. 
 ///  @param [in] assumedDepth Depth at which the virtual projected 
 ///  window should be location (defaults to 2 meters) 
 ///  Note that this function is used to compute both synchronous and 
 ///  asynchronous time warps, only the currentRenderInfo changes. 
 bool RenderManager::ComputeAsynchronousTimeWarps( 
     std::vector<RenderInfo> usedRenderInfo, 
     std::vector<RenderInfo> currentRenderInfo, float assumedDepth) { 
 
     // See if we're using a D3D11 rendering library.  If so, we need 
     // to scale some Y values by -1 and transpose the result. The standard 
     // approach works for OpenGL. 
     float flipYScale = 1.0f; 
     bool doTranspose = false; 
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     if (dynamic_cast<RenderManagerD3D11Base*>(this)) { 
         flipYScale = -1.0f; 
         doTranspose = true; 
     } 
 
     // Empty out the time warp vector until we fill it again below. 
     m_asynchronousTimeWarps.clear(); 
 
     size_t numEyes = GetNumEyes(); 
     if (assumedDepth <= 0) { 
         return false; 
     } 
     if ((currentRenderInfo.size() < numEyes) || 
         (usedRenderInfo.size() < numEyes)) { 
         return false; 
     } 
 
     for (size_t eye = 0; eye < numEyes; eye++) { 
         // Compute the scale to use during forward transform. 
         // Scale the coordinates in X and Y so that they match the width and 
         // height of a window at the specified distance from the origin. 
         // We divide by the near clip distance to make the result match that 
         // at a unit distance and then multiply by the assumed depth. 
         float xScale = static_cast<float>( 
             (usedRenderInfo[eye].projection.right - 
              usedRenderInfo[eye].projection.left) / 
             usedRenderInfo[eye].projection.nearClip * assumedDepth); 
         float yScale = static_cast<float>( 
             (usedRenderInfo[eye].projection.top - 
              usedRenderInfo[eye].projection.bottom) / 
             usedRenderInfo[eye].projection.nearClip * assumedDepth); 
 
         // Compute the translation to use during forward transform. 
         // Translate the points so that their center lies in the middle of 
         // the view frustum pushed out to the specified distance from the 
         // origin. 
         // We take the mean coordinate of the two edges as the center that 
         // is to be moved to, and we move the space origin to there. 
         // We divide by the near clip distance to make the result match that 
         // at a unit distance and then multiply by the assumed depth. 
         // This assumes the default r texture coordinate of 0. 
         float xTrans = static_cast<float>( 
             (usedRenderInfo[eye].projection.right + 
              usedRenderInfo[eye].projection.left) / 
             2.0 / usedRenderInfo[eye].projection.nearClip * assumedDepth); 
         float yTrans = static_cast<float>( 
             (usedRenderInfo[eye].projection.top + 
              usedRenderInfo[eye].projection.bottom) / 
             2.0 / usedRenderInfo[eye].projection.nearClip * assumedDepth); 
         float zTrans = static_cast<float>(-assumedDepth); 
 
         // NOTE: These operations occur from the right to the left, so later 
         // actions on the list actually occur first because we're 
         // post-multiplying. 
 
         // Translate the points back to a coordinate system with the 
         // center at (0,0); 
         const Eigen::Isometry3f postTranslation( 
             Eigen::Translation3f(0.5f, 0.5f, 0.0f)); 
 
         // Determine the impact of just-in-timewarp in the coordinate system 
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         // with the center of the screen at the origin and unit width and 
         // height.  We only do this if just-in-timewarp is enabled; otherwise, 
         // we set this to the identity matrix. 
         Eigen::Matrix<float, 4, 4> justInTimeWarp; 
         justInTimeWarp.setIdentity(); 
         if (m_params.m_justInTimeWarp) { 
             std::array<float, 4> coeffs = ComputeJustInTimeWarp(); 
             const float &xScale = coeffs[0]; 
             const float &yScale = coeffs[1]; 
             const float &xShearWithY = coeffs[2]; 
             const float &yShearWithX = coeffs[3]; 
             justInTimeWarp(0, 0) = xScale; 
             justInTimeWarp(1, 1) = yScale; 
             if (doTranspose) { 
                 justInTimeWarp(0, 1) = xShearWithY; 
                 justInTimeWarp(1, 0) = yShearWithX; 
             } else { 
                 justInTimeWarp(1, 0) = xShearWithY; 
                 justInTimeWarp(0, 1) = yShearWithX; 
             } 
         } 
 
         /// Scale the points so that they will fit into the range 
         /// (-0.5,-0.5) 
         /// to (0.5,0.5) (the inverse of the scale below). 
         const Eigen::Affine3f postScale( 
             Eigen::Scaling(1.0f / xScale, flipYScale / yScale, 1.0f)); 
 
         /// Translate the points so that the projection center will lie on 
         /// the -Z axis (inverse of the translation below). 
         const Eigen::Isometry3f postProjectionTranslate( 
             Eigen::Translation3f(-xTrans, -yTrans, -zTrans)); 
 
         /// Compute the forward last ModelView matrix. 
         const Eigen::Isometry3f lastModelView = osvr::util::eigen_interop::map( 
             usedRenderInfo[eye].pose).transform().cast<float>(); 
         Eigen::Isometry3f lastModelViewTransform(lastModelView); 
 
         /// Compute the inverse of the current ModelView matrix. 
         const Eigen::Isometry3f currentModelViewInverseTransform = 
             osvr::util::eigen_interop::map( 
             currentRenderInfo[eye].pose).transform().cast<float>().inverse(); 
 
         /// Translate the origin to the center of the projected rectangle 
         Eigen::Isometry3f preProjectionTranslate( 
             Eigen::Translation3f(xTrans, yTrans, zTrans)); 
 
         /// Scale from (-0.5,-0.5)/(0.5,0.5) to the actual frustum size 
         Eigen::Affine3f preScale(Eigen::Scaling(xScale, flipYScale * yScale, 1.0f)); 
 
         // Translate the points from a coordinate system that has (0.5,0.5) 
         // as the origin to one that has (0,0) as the origin. 
         Eigen::Isometry3f preTranslation( 
             Eigen::Translation3f(-0.5f, -0.5f, 0.0f)); 
 
         /// Compute the full matrix by multiplying the parts. 
         Eigen::Projective3f full = 
             postTranslation * justInTimeWarp * postScale * postProjectionTranslate * 
             lastModelViewTransform * currentModelViewInverseTransform * 
             preProjectionTranslate * preScale * preTranslation; 
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         // Store the result, transposing if we're using D3D. 
         matrix16 timeWarp; 
         if (doTranspose) { 
             Eigen::Matrix4f::Map(timeWarp.data) = full.matrix().transpose(); 
         } else { 
             Eigen::Matrix4f::Map(timeWarp.data) = full.matrix(); 
         } 
         m_asynchronousTimeWarps.push_back(timeWarp); 
     } 
     return true; 
 } 

 
Asynchronous Time Warp (ATW) 
Due to scene complexity, O/S interrupts, or other causes the rendering process sometimes takes more 
time than a single scan out interval.  For non-immersive displays, this can introduce jerkiness in 
playback; in immersive VR it also introduces a doubled image when the viewer’s head pose is changing.  
To avoid these artifacts, the VR system can re-warp and re-display the previously presented image 
based on updated tracking information at the time the next frame needs to be displayed. 
 
The warping function is the same as for standard time warp and does the same adjustment based on 
the difference between the viewer’s pose at the time the image began rendering and the current pose. 
 
To ensure that a new warped image is available each frame, asynchronous time warp must use frame 
sync and it must launch a separate rewarping thread that keeps the most-recently-presented image 
and use that to warp and present just ahead of display scan-out.  This thread should have real-time 
priority in both the operating system and on the GPU.  (To enable interruption of long-running renders, 
it must make use of vendor-specific APIs to enable pre-emptive rendering.)  On operating systems such 
as Windows 10 with coarse sleep-return temporal granularity (e.g. 10ms or more), it may be necessary 
to busy-wait on the time before refresh to avoid missing updates. 
 
To ensure that basic scene rendering has fully completed prior to attempting the last-millisecond final 
rendering pass, the application thread must use a rendering-library-specific call to ensure that all 
operations are complete and the texture is ready for use before handing it to the rewarping thread. 
 
Because the rewarping thread must always have a texture containing the basic scene ready, it must 
either make a copy of the texture presented by the application or the application must use double 
buffering and not modify the texture that was most recently presented; it must only modify a texture 
after presenting a different texture for display. 
 
(Note that asynchronous time warp is only correct for non-moving objects in the scene.  Moving 
objects will have shifted positions between the beginning and end of rendering, and applying this time 
warp to them will produce artifacts like those produced by jitter to those objects, similar to how this 
happens to the entire scene when rendered without frame sync.) 
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Implementation of asynchronous time warp within OSVR 
Asynchronous time warp is implemented in the Sensics OSVR-RenderManager’s ATW renderer 
[OSVRRenderManager17].  As of March 2018, it is implemented only for direct mode interfaces using 
the Direct 3D graphics library because these are the only ones that currently support frame sync but it 
on Windows it is wrapped using the OpenGL Interop libraries to provide ATW for OpenGL as well. 
 
OSVR constructs a completion-query event when the renderer is opened and uses it to ensure that 
rendering to the texture completes before passing it to the rewarping thread (see 
[OSVRRMD3DBase17] for the complete implementation) as shown in Listing 32.11: 
 

Listing 32.11: Ensuring Rendering Completion 
        // Constructed during initialization and re-used during rendering 
        D3D11_QUERY_DESC desc = {}; 
        desc.Query = D3D11_QUERY_EVENT; 
        m_D3D11device->CreateQuery(&desc, &m_completionQuery); 

 
        // Using the query each time through the rendering loop 
        m_D3D11Context->End(m_completionQuery); 
        m_D3D11Context->Flush(); 
        while (S_FALSE == m_D3D11Context->GetData(m_completionQuery, nullptr, 0, 0)) { 
            // We don't want to miss the completion because Windows has 
            // swapped us out, so we busy-wait here on the completion 
            // event. 
        } 
 
A rewarping thread in the ATW RenderManager class uses a second RenderManager to do the actual 
rendering.  It internally keeps track of either copying buffers or locking shared buffers before handing 
them to the rendering thread. 
 
As of March 2018, pre-emptive GPU scheduling is only available within OSVR on nVidia Pascal-series 
cards (eg. GeForce 1080), and only with GeForce driver version 372.54 or later.  In other cases, ATW 
cannot pre-empt a long-running render thread.  This means that a long-running rendering thread will 
block access to the GPU and prevent the rendering thread from gaining access, causing it to miss 
frames. 
 
Just In Time Warp (AKA Beam Racing, Just-In-Time Pixels, Intra-Frame Warp) 
Many head-mounted displays scan the visible pixels from one end of the display to the other, thus 
pixels at the bottom line are rendered almost a full cycle behind the pixels at the top.  Because the 
images produced by the application are rendered at a single point in time, head motion during the 
frame causes spatial misalignment between what should be seen and the rendered scene.  For 
example, the image of a cube rendered in a frame where the viewer’s head is rapidly rotating from the 
left to the right should show the lower portions of the cube to the left of the higher portions because 
the head has moved since the upper pixels were displayed, yet with standard rendering are directly 
below them.  This makes the perceived object seem to be slanted towards the left. 
 



Russell M. Taylor II Version 1.0.1 Published in the book VR Gems in 2018 

Chapter 32: Taylor: VR Concepts (1.0.1)  34 

 
 
Noting that “The ideal way to generate an image […] would be to recalculate for each pixel the position 
and orientation of the camera and the position and orientation of the scene’s objects, based upon the 
time of display of that pixel”  Olano et al. propose “Just-in-time-pixels” [Olano95].  Because of the 
expense of re-rendering each scene, they propose an approximation of determining the correct 
transformation for the first and last scan lines in an image and using linear interpolation for object 
locations in the scan lines between them.  Figure 12 shows this implementation in action on a simple 
test scene. 
 
Implementation of intra-frame time warp within OSVR 
Observing that the largest distortion due to head motion is often caused by rotation of the head in the 
vertical or horizontal planes and further noting that affine transformations can be readily applied 
during the rendering pass (the time warp implementation already includes a general 4x4 matrix 
multiplication), OSVR-RenderManager can easily approximate the impact of these transformations at 
negligible increased rendering cost by adding anisotropic scaling and shearing to the time-warp texture 
reprojection matrix.  OSVR predicts the viewing time for each eye in the center of the viewing area and 
distorts other image regions based on linear horizontal and vertical rotational velocity estimates.  As is 

 
Figure 32.12: Left: An image of a small dark blue cube within a colored cube room taken with the 
head held still shows the cube to be square.  Right: A just-in-time rendering of this same scene with 
the head rapidly moving shows shearing in X and a scale reduction in Y to compensate for changes 
in location of the scan lines during scan-out.  Note that the still image is deceiving because when 
you look at it on paper it’s entirely “rendered” at the same time and your head isn’t moving –  when 
viewed from within the moving HMD, the scene appears normal; without just-in-time rendering, the 
cube appears to be stretched in Y and sheared in the opposite direction.  (As for the black regions, 
see the section on Overfill and Oversampling below.) 
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the case with regular time warp of planar-projected images, these transformations are approximations 
that work better for small temporal differences. 
 
The case where the display scans out from top to bottom and the viewer’s head is rotating from right 
to left and slightly downwards matches the case shown in figure 32.12, where the lower portion of the 
square must be offset to the right with respect to the center of the image so that it will be drawn at a 
location in physical space that is directly below its top (it is drawn later, and the head has rotated to 
the left).  The distortion is compensated for by adding shearing to the texture reprojection matrix 
which causes it to sample texture locations increasingly to the right as the image is scanned out from 
top to bottom.  The amount of shear is selected that causes a vertical line drawn at the center of the 
image to appear to remain vertical in the presence of the estimated rotational speed. 
 
Figure 12 also shows the case where the display scans out from top to bottom and the viewer’s head is 
rotating downward causes the bottom of the cube to appear to be drawn lower in physical space, 
causing it to appear to stretch vertically.  To offset this, an anisotropic scaling is performed in the 
vertical direction, where X coordinates are left unchanged but Y coordinates are adjusted to 
compensate for the perceived stretching by shrinking the cube vertically.  For upwards head rotation, 
the Y coordinates are stretched.  The scaling factor is selected that results in no vertical stretching or 
squashing for a pixel located at the center of the image. 
 
The two transformations are orthogonal for small motions, so can be safely applied independently of 
one another. 
 
For an HMD whose screen is mounted upside down (at a display rotation of 180 degrees), the 
distortions described above are inverted – downward head motion causes apparent squashing and 
upward motion causes apparent stretching.  This case can be handled by inverting the change in X and 
Y positions.  For the case of displays that scan out from right to left and left to right, the shearing and 
stretching operations are swapped.  The general case can be treated as a rotation about the +Z axis 
(which comes out of the image), transforming from the (X,Y) coordinate system to a (shear, scale) 
coordinate system with the signs of the scaling and shearing factors determined by the rotation.  
Because the display orientation in the operating system and the display scan-out may not be related, a 
configuration-file entry declares from which border of the HMD screen scan-out commences. 
 
Listing 32.10 included the construction of the shearing and stretching transformations, which rely on 
the function shown in Listing 32.12 to compute the appropriate amount and orientation of the shear 
and anisotropic scaling. 
 

Listing 32.12: Determining Just In Time Warp coefficients 
    /// This function computes the coefficients of nonuniform scaling 
    /// and shearing required to implement just-in-timewarp in a space 
    /// where (0,0) is the center of the screen and the screen width and 
    /// height are both 1 (dimensions go from -0.5 to 0.5 in each axis). 
    /// It first computes the velocity, then based on that and the rotation 
    /// of the scan-out with respect to the image produces the four values. 
    /// It does not check to see whether just-in-timewarp is enabled. 
    /// @return Four doubles, indicating: 0th = the scaling 
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    ///         of the image in the X direction, 1st = the scaling 
    ///         of the image in the Y direction, 2nd = the shear in 
    ///         X coordinate as Y varies, 3rd = the shear in the Y 
    ///         coordinate as X varies.  At most one of the scalings and 
    ///         at most one of the shear transformations will be active 
    ///         at a time; which ones are active depends on the orientation. 
    std::array<float, 4> RenderManager::ComputeJustInTimeWarp() { 
        // We initialize the values with ones that won't cause any 
        // change.  We will override them as we find reason. 
        std::array<float, 4> ret = { 1, 1, 0, 0 }; 
 
        // Figure out which edge of the display scan-out starts at based 
        // on the just-in-time rotation.  This describes which edge will 
        // be rotated to point "up" when the display is rotated about the 
        // +Z axis (out of the screen) and it starts at the canonical orientation 
        // with X to the right and Y up.  The four results are 0 = top, 1 = right, 
        // 2 = bottom, 3 = left.  The code rounds to the nearest one. 
        int edgeUp = static_cast<int>( 
            floor((m_params.m_justInTimeWarpRotation + 44.9999) / 90)); 
        if (edgeUp < 0) { edgeUp += 4 * static_cast<int>(1 - edgeUp / 4); } 
        edgeUp = edgeUp % 4; 
 
        // Find out the timing information, which will let us know the 
        // duration of a full-screen scan-out.  If we are scanning out 
        // from left to right or right to left, divide this by the number 
        // of eyes per display to find the per-eye scan-out duration. 
        RenderTimingInfo timing; 
        if (!GetTimingInfo(0, timing)) { 
            // If we have no timing information, then we have nothing to use 
            // to predict so we return the do-nothing result. 
            return ret; 
        } 
        double screenScanTime = (timing.hardwareDisplayInterval.seconds + 
            timing.hardwareDisplayInterval.microseconds / 1e6); 
        if (edgeUp % 2 == 1) { 
            screenScanTime /= GetNumEyesPerDisplay(); 
        } 
 
        // Find out the pose velocity information, if available. 
        // Set the valid flags to false so that if to call to get 
        // velocity fails, we will not try and use the info. 
        OSVR_TimeValue timestamp; 
        OSVR_VelocityState vel; 
        vel.linearVelocityValid = false; 
        vel.angularVelocityValid = false; 
        if (osvrGetVelocityState(m_roomFromHeadInterface, &timestamp, &vel) != 
              OSVR_RETURN_SUCCESS) { 
            // No velocity information available, so we return the do-nothing result. 
            return ret; 
        } 
 
        // Convert the incremental orientation change in world space back 
        // into (local) head space by transforming it by the inverse of the 
        // current head pose. 
        //  Handle a non-Identity room-from-world transform in the OSVR-Core 
        // room-to-world transform (as opposed to the RenderManager one, which is 
        // already handled because we apply that transformation ourselves).  We 
        // do this by getting and applying the room-to-world transform from Core 
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        // here.  Again, we can ignore the RenderManager room-to-world that was 
        // passed in as RenderParam because all of our differential transform 
        // work here takes place below it. 
        OSVR_PoseState pose; 
        if (osvrGetPoseState(m_roomFromHeadInterface, &timestamp, &pose) != OSVR_RETURN_SUCCESS) 
{ 
            // No pose information available, so we return the do-nothing result. 
            return ret; 
        } 
        osvr::common::Transform xform(ei::map(pose).matrix(), ei::map(pose).matrix().inverse()); 
        xform.transform(m_context->getRoomToWorldTransform()); 
        Eigen::Quaterniond localRot = xform.transformDerivative( 
            ei::map(vel.angularVelocity.incrementalRotation)); 
 
        // Turn incremental rotation into Euler rotation rates in radians/second. 
        // Do this by converting the Quaternion into Euler and then dividing by the 
        // delta time.  We do this twice, once with the X axis being defined as the 
        // last axis to be rotated around and once with the Y axis as the last. (The 
        // last axis is the first listed in right-to-left multiplication.)  If we 
        // use the same Euler set for more than one angle, sometimes we get flips by 
        // Pi around the axes. 
        const double &dt = vel.angularVelocity.dt; 
        Eigen::Vector3d euler = localRot.toRotationMatrix().eulerAngles(0, 1, 2); 
        if (euler[0] > boost::math::double_constants::pi / 2) { 
            // Rotation around first axis is always positive when returned from eulerAngles; 
switch 
            // the second quadrant into the fourth so that we get symmetry around 0. 
            euler[0] -= boost::math::double_constants::pi; 
        } 
        double rX = euler[0] / dt; 
        euler = localRot.toRotationMatrix().eulerAngles(1, 2, 0); 
        if (euler[0] > boost::math::double_constants::pi / 2) { 
            // Rotation around first axis is always positive when returned from eulerAngles; 
switch 
            // the second quadrant into the fourth so that we get symmetry around 0. 
            euler[0] -= boost::math::double_constants::pi; 
        } 
        double rY = euler[0] / dt; 
 
        // Determine the amount of rotation around the X axis in degrees that takes 
        // place during the eye scan-out time.  Do the same for Y. 
        double xRotationDegrees = screenScanTime * osvr::common::radiansToDegrees(rX); 
        double yRotationDegrees = screenScanTime * osvr::common::radiansToDegrees(rY); 
 
        /// Determine the fraction of the display width in angles in X that will be 
        /// covered by this rotation around Y over the course of the frame.  Do the same for 
        /// the fraction of the height in angles in Y that will be covered by rotation 
        /// about X.  Leave these signed, so that we know whether to rotate in the positive 
        /// or negative direction. 
        float xRotationNormalized = static_cast<float>(xRotationDegrees / 
              osvr::util::getDegrees(m_params.m_displayConfiguration->getHorizontalFOV()) 
          ); 
        float yRotationNormalized = static_cast<float>(yRotationDegrees / 
              osvr::util::getDegrees(m_params.m_displayConfiguration->getVerticalFOV()) 
          ); 
 
        // Based on the scan-out direction, adjust the relevant output parameters 
        // to indicate the amount of scaling and shearing that will take place over 
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        // an eye scan-out time. 
        switch (edgeUp) { 
        case 0: // Top up. 
            // As the head rotates around +X, we get stretching in Y. 
            // To compensate, we need to scale Y down when rotating in +X. 
            ret[1] = 1 - xRotationNormalized; 
 
            // As the head rotates around +Y, we get shearing in +X with increasing Y. 
            // To compensate, we need to shear in X based on -Y. 
            ret[2] = -yRotationNormalized; 
            break; 
 
        case 1: // Right up 
            // As the head rotates around -Y, we get stretching in X. 
            // To compensate, we need to scale X down when rotating in +Y. 
            ret[0] = 1 + yRotationNormalized; 
 
            // As the head rotates around +X, we get shearing in -Y with increasing X. 
            // To compensate, we need to shear in Y based on X. 
            ret[3] = xRotationNormalized; 
            break; 
 
        case 2: // Bottom up 
            // As the head rotates around +X, we get compression in Y. 
            // To compensate, we need to scale Y up when rotating in +X. 
            ret[1] = 1 + xRotationNormalized; 
 
            // As the head rotates around +Y, we get shearing in -X with increasing Y. 
            // To compensate, we need to shear in X based on Y. 
            ret[2] = yRotationNormalized; 
            break; 
 
        case 3: // Left up 
            // As the head rotates around Y, we get stretching in X. 
            // To compensate, we need to scale X up when rotating in +Y. 
            ret[0] = 1 - yRotationNormalized; 
 
            // As the head rotates around +X, we get shearing in Y with increasing X. 
            // To compensate, we need to shear in Y based on -X. 
            ret[3] = -xRotationNormalized; 
            break; 
        } 
 
        return ret; 
    } 

Direct Rendering (aka Direct Mode, Direct-to-Display) 
To support transparent borders and other user-interface effects, some operating systems store each 
rendered frame before compositing it onto the display, which adds a frame of latency.  To improve 
throughput, some graphics-card drivers keep two or more frames in the pipeline, with CPU rendering 
completing more than a frame sooner than the image will be presented to the display.  Both 
approaches add to the end-to-end latency for VR systems.  This section describes how to avoid these 
delays using direct rendering. 
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Vendor-specific APIs have been provided by nVidia and AMD to bypass the operating system and 
render directly to the display device.  (A vendor-independent approach is being implemented within a 
new Microsoft API as well.)  Each of these approaches also offers control over the number of buffers 
and their presentation to the display surface, enabling either frame asynchronous or frame 
synchronous swapping of buffers and determination of the time at which vertical retrace happens.  
This enables front-buffer rendering, but also double-buffer rendering where the buffers are swapped 
just before vertical retrace, thus providing the combined benefit of extended render times together 
with low-latency presentation. 
 
Within-Display Buffering 
A similar effect can happen inside the display devices themselves.  Many devices will support taking 
images in either landscape or portrait mode and support flipping the scan-out upside down in either 
mode.  Of course, these displays natively scan out in only one particular direction (often portrait mode, 
starting at the right side of the display as mounted in an HMD) so to flip the image they must first 
internally buffer a whole frame before starting scan out. 
 
Determining which orientation is preferred requires reading manufacturer specifications or careful 
testing with a sensitive latency meter.  Once determined, best performance is achieved by driving the 
display in the native mode and doing any required frame flipping within the VR system’s final rendering 
pass. 
 
Graphics-Language Interoperability 
On Windows 10, Direct Rendering is only available for the Direct3D graphics library and not for 
OpenGL.  On upcoming Linux interfaces, it may be available only on Vulkan.  Accessing these 
capabilities from OpenGL or other languages requires sharing image buffers between graphics libraries, 
either using the nVidia NV_DX_interop interface [nVidia10], using shared handles or using Khronos EGL 
buffers [Khronos17]. 
 
In these cases, rendering is performed in one rendering library and then the buffers are shared with 
the Direct-Rendering-capable library and it presents them to the display.  These approaches require an 
additional flushing of the graphics commands to GPU before passing control of the buffers between 
libraries to ensure that all rendering dependencies are met. 
 
Note that different graphics libraries have different coordinate systems (or different defaults that are 
used by their communities).  For example, OpenGL and Direct3D use different origins for texture 
coordinates, with OpenGL using the lower left corner and Direct3D the upper left.  This requires 
adjustments to be made when sharing buffers between libraries. 
 
Implementation of direct rendering within OSVR 
Because the individual vendor APIs are only available under nondisclosure agreements, the Sensics 
OSVR-RenderManager library implements RenderManager interfaces for them and distributes them 
with OSVR-built DLLs but cannot release the source code for these drivers.  To maximize the portion of 
the code using open source, all techniques using DirectMode: Asynchronous Time Warp, OpenGL 
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Interoperability, Frame Sync, and even the interface that applications use to control Direct Rendering 
are implemented by either harnessing a Direct Rendering RenderManager or are implemented within it 
using the same RenderManager interface used by the open-source drivers. 
 
OSVR-RenderManager uses OpenGL Interop to share buffers between an application OpenGL context 
(Legacy or Core) and the Direct3D context used for display.  It handles the buffer flipping and 
coordinate transformations needed to translate images, distortion correction, and time warps between 
the systems.  It does this by providing a RenderManagerD3DOpenGL class [RMD3DOpenGL16]. 
 
OSVR-RenderManager also handles the image flipping required to avoid Within-Display Buffering, as 
well as providing the option to drive portrait or landscape displays mounted at any orientation.  It 
provides transformations to the application so that it can render the images as if they were right-side-
up (enabling text, sprites, and other pixel-aligned techniques to work properly) and then re-orienting 
the image as needed to meet display needs. [RMRotateViewport17] [RMConstructModelView17] 

Overfill and Oversampling 
Time warp reprojects an image from a different viewpoint.  Normally, the original image could be 
rendered to exactly cover the canonical screen; however, reprojection causes the new viewpoint to see 
past those original borders.  This produces black borders creeping in from the edges.  Distortion 
correction can produce a similar effect when the canonical screen does not completely fill the display, 
resulting in similar borders.  Both issues can be addressed using Overfill — i.e. rendering an image that 
goes beyond the edges of the canonical screen.  This section describes how to use these approaches to 
remove rendering artifacts. 

 
 

 
Figure 32.13: Left: Time-warped frame from Unity Sun Temple demo reveals borders 
around the image that were not rendered.  Right: By rendering past the borders of the 
canonical screen, there is now enough image to cover the entire new viewport. 
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Overfill requires adjustment of both the projection transformation (making the projection region 
wider) and the graphics viewport size in pixels (providing a place to store the extra pixels); the viewing 
transformation remains the same.  The size of overfill needed to hide the borders depends on the 
distortion correction being done, on the length of time between rendering and warping, and on the 
speed of rotation of the viewer’s head: faster rotation reveals more border per unit time. 
 
Distortion correction will, by definition, increase the visible size of some regions on the canonical 
screen and decrease the size of others.  If the rendered image has as many texture elements as there 
are pixels on the display, then some regions will be expanded such that there are more physical display 
pixels than available texture elements, producing images that sacrifice the potential sharpness of the 
display.  This can be addressed using Oversampling — i.e. rendering an image that has more texture 
elements than the display has pixels. 
 
Oversampling requires adjustment of only the pixel size of the graphics viewport; the viewing and 
projection transformations remain the same.  The amount of oversampling required depends on the 
largest magnification caused by distortion correction. 
 
Oversampling can also be used in the opposite direction, reducing the number of texture elements 
compared to the number of display pixels, to increase the rendering rate for applications that have 
large amount of per-pixel processing.  This trades off reduced image resolution for increased rendering 
speed. 
 
Implementation of overfill and oversampling within OSVR 
The Sensics OSVR-RenderManager library implements both overfill and oversampling, taking them into 
account when generating the projection transformation and when generating the viewport 
description.  Overfill is handled in the projection transformation by specifying a fractional increase in 
size, which is then used to expand the projection as shown in Listing 32.13: 
 

Listing 32.13: Overfill handling in projection transformation calculation. 
        double xMargin = width / 2 * (m_params.m_renderOverfillFactor - 1); 
        double yMargin = height / 2 * (m_params.m_renderOverfillFactor - 1); 
        left -= xMargin; 
        right += xMargin; 
        top += yMargin; 
        bottom -= yMargin; 

 
This expansion must be inverted in the code that renders to the graphics library so that only the 
correct fraction of the image is visible within the resulting displayed frame.  This is handled in the 
OpenGL code path by adjusting the projectionMatrix entry in the vertex shader shown in Listing 32.14: 
 

Listing 32.14: Overfill handling in vertex shader projection. 
        m_projectionUniformId = glGetUniformLocation(m_programId, "projectionMatrix"); 
 
        GLfloat myScale = m_params.m_renderOverfillFactor; 
        GLfloat scaleProj[16] = { myScale,0,0,0,    0,myScale,0,0,   0,0,1,0,   0,0,0,1 }; 
        glUniformMatrix4fv(m_projectionUniformId, 1, GL_FALSE, scaleProj); 
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Along with oversampling, overfill is used to expand the viewport size as shown in Listing 32.15: 
 

Listing 32.15: Overfill handling in viewport calculation. 
        viewport.width = xFactor * m_displayWidth * m_params.m_renderOverfillFactor * m_params.m_renderOversampleFactor; 
        viewport.height = yFactor * m_displayHeight * m_params.m_renderOverfillFactor * m_params.m_renderOversampleFactor; 

 
The expansion in viewport must be taken into account in the code that handles time warp and 
distortion correction so that it maps the standard texture coordinate range (0,0)-(1,1) into the portion 
of the texture that represents the canonical screen.  This approach supports the expansion of the range 
within the overfilled viewport [RMCorrectCoord17] as shown in Listing 32.16: 
 

Listing 32.16: Overfill Support in Distortion Correction. 
  /// Takes a texture coordinate that is specified in the coordinate system of 
  /// a Presented texture for a given eye, which has (0,0) at the lower left 
  /// and (1,1) at the upper right.  The lower left and upper right are at the 
  /// boundaries specified by the overfill rectangle, which are not visible 
  /// for overfill factors > 1. 
  /// @param eye eye to get coordinates for 
  /// @param inCoords coordinates to modify 
  /// @param distort distortion parameters 
  /// @param color red=0, green=1, blue=2 
  /// @param overfillFactor scaling factor to allow for timewarp 
  /// @param interpolators list of unstructured mesh interpolators 
    using Float2 = std::array<float, 2>; 
    inline Float2 OSVR_RENDERMANAGER_EXPORT DistortionCorrectTextureCoordinate( 
        const size_t eye, Float2 const& inCoords, 
        const DistortionParameters& distort, const size_t color, 
        const float overfillFactor, 
        const std::vector< std::unique_ptr<UnstructuredMeshInterpolator> >& interpolators) { 
        // Check for invalid parameters 
        if (color > 2) { 
            return inCoords; 
        } 
 
        // Convert from coordinates in the overfilled texture to coordinates 
        // that will cover the range (0,0) to (1,1) on the screen.  This is 
        // done by scaling around (0.5,0.5) to push the edges of the screen 
        // out to the (0,0) and (1,1) boundaries. 
        using Eigen::Vector2f; 
        using Eigen::Map; 
        const auto inMap = Map<const Vector2f>(inCoords.data()); 
 
        Vector2f xyN = (inMap - Vector2f::Constant(0.5f)) * overfillFactor + 
                       Vector2f::Constant(0.5f); 
        const float xN = xyN.x(); 
        const float yN = xyN.y(); 
 
        const auto normalized_inCoords = Float2{xN, yN}; 
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        Float2 ret = DistortionCorrectNormalizedTextureCoordinate( 
            eye, normalized_inCoords, distort, color, interpolators); 
 
        // Convert from unit (normalized) space back into overfill space. 
        ret[0] = (ret[0] - 0.5f) / overfillFactor + 0.5f; 
        ret[1] = (ret[1] - 0.5f) / overfillFactor + 0.5f; 
 
        return ret; 
    } 

Rendering State 
VR systems take time-varying, linear and nonlinear geometric descriptions of the relative locations and 
orientations of objects in space and produce descriptions suitable for implementation in the linear 
geometric operations available in graphics libraries.  This section describes how to manage this state 
across graphics libraries. 
 
The resulting linear operations can be implemented in various rendering systems, including basic 
graphics libraries (OpenGL, Direct3D, GLES, Vulkan, etc.), game engines (Unreal, Unity, Blender, etc.) 
and others (VTK, OpenCV, etc.).  These systems have a variety of distance units (meters, mm, pixels, 
etc.) and coordinate systems (right-handed vs. left-handed, screen lower-left vs. upper-left, etc.).  This 
means that no single internal representation can be used within a VR system that is to be implemented 
across multiple rendering systems.  It also means that all aspects of the coordinate system must be 
carefully described because they will be unfamiliar to users of some of the rendering systems. 
 
The variety of coordinate systems requires that for a VR system to be easily adapted between 
rendering systems it must either provides adapters for each rendering system or else use conditional 
compilation or wrappers to behave differently when used with different systems. 
 
Time 
The proper spatial alignment of rendered viewpoints with objects that remain stationary in the real 
world is required to prevent “swimming” of the virtual world around the viewer.  This is even more 
important in augmented reality systems, where overlaid virtual objects must remain aligned with their 
real-world counterparts. 
 
This alignment requires a level of timing accuracy that is beyond the needs of most non-immersive 3D 
graphics displays.  Combining multiple devices, and sometimes multiple computers, in the collection of 
tracking data (and sometimes video data to integrate the real world) can make accurate timing 
difficult.  The Network Time Protocol (NTP) [NTP17] can be tuned to achieve submillisecond agreement 
among a small number of computers on the same network.  Properly-aligned, submillisecond-precise 
clocks between processes have recently become common on some operating systems and compilers. 
 
USB interfaces, video cameras, network drivers, and other drivers within an operating system often 
enable high throughput and offload work from the CPU by providing buffering and a separation of fast 
kernel-level drivers from slower user-level drivers.  This can introduce both latency and jitter in the 
time between a physical measurement on a device and the presentation of that measurement to the 
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system.  Reducing this can require adjustment of system scheduling intervals, tuning parameters on 
network connections, raising the priority of processes that handle devices, and busy-waiting on inputs 
rather than letting the operating system release data to the system at its usual intervals [VRPN01].  It 
can also require back-dating the time associated with measurements based on the known capture and 
transmission time [VRPN01]. 
 
To enable consistency between all portions of a VR system, each event and measurement should be 
time stamped.  This enables comparison and proper relative dating of all measurements within the 
system, producing a common frame of reference. 
 
Implementation of rendering state within OSVR 
OSVR-Core associates timing information with all system events and measurements and uses busy-
waiting on actively-used devices to ensure low-latency measurement and data transport.  Its internal 
end-to-end latencies for device measurement, estimation, and reporting are considerably 
submillisecond.  When compiled using Visual Studio 2015 or higher on Windows, and on all other 
operating systems, it provides submillisecond-accurate consistent clocks across processes on a single 
computer; it relies on NTP to maintain accuracy between computers. 
 
The Sensics OSVR-RenderManager provides graphics-language-specific (OpenGL, Direct3D, Unity, 
Unreal) conversion functions to describe the number and size of required textures, viewports, 
projection and ModelView matrices needed to configure rendering for scenes [RMGLD3D16] 
[RMGLGL16].  The RenderManager receives all viewports and textures in their canonical (viewer up is 
texture up) orientation and internally maps everything to the correct orientation, enabling the use of 
bitmap fonts and other rendering effects that require canonical orientation.  An optional, callback-
based rendering path provides these transformations for arbitrary OSVR spaces (head space, hand 
space, room space, etc.). 
 
The Sensics OSVR-RenderManager manages the display-orientation remapping using Modelview 
matrices within the vertex shaders for each of its rendering paths.  It internally keeps track of any 
rotation required by the display and any flipping required by the rendering library compared to the 
OSVR internal coordinate system.  The following routine uses this information to produce a generic 
matrix that each rendering path then copies into the matrix used by its shader as shown in Listing 
32.17: 
 

Listing 32.17: Display-Orientation Remapping. 
    bool RenderManager::ComputeDisplayOrientationMatrix( 
        float rotateDegrees, //< Rotation in degrees around Z 
        bool flipInY,//< Flip in Y after rotating? 
        matrix16& outMatrix //< Matrix to use. 
        ) { 
 
        /// Scale the points to flip the Y axis if that is called for. 
        float yScale = 1; 
        if (flipInY) { yScale = -1; } 
        Eigen::Affine3f preScale(Eigen::Scaling(1.0f, yScale, 1.0f)); 
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        // Rotate by the specified number of degrees. 
        Eigen::Vector3f zAxis(0, 0, 1); 
        float rotateRadians = static_cast<float>(rotateDegrees * M_PI / 180.0); 
        Eigen::Affine3f rotate(Eigen::AngleAxisf(rotateRadians, zAxis)); 
 
        /// Compute the full matrix by multiplying the parts. 
        Eigen::Projective3f full = rotate * preScale; 
 
        // Store the result. 
        memcpy(outMatrix.data, full.matrix().data(), sizeof(outMatrix.data)); 
 
        return true; 
    } 

Conclusion 
The geometry-critical and time-critical rendering needs in virtual reality require the concerted use of a 
suite of techniques beyond those applied in non-immersive interactive computer graphics systems.  
This chapter describes each of those needs and provides example code to implement them based on 
the OSVR system, which itself is an open-source solution that implements all of them working 
together. 
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